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Scientific Models: What and Why

 What: representations of real-world phenomena or objects.
 Why:

* Models are tools, not answers
 Model output can be ugly if not based on solid understanding



Global Climate Models

Theoretical Usage:

* Provide a platform to conduct experiments on the Earth.
* Scientific method: prediction, evaluation and understanding

Applied Usage:
e Climate Information and Impact Assessment

e Decision Making (tomorrow, next month, 30-years from now)



Numerical Weather Prediction

Motivation: To produce an accurate forecast.

Methods: Numerical solutions to atmospheric fluid motion that
describe the time evolution of the atmosphere

X forecast _ Xinitial n F( X) at

1. Make them programmable into a powerful computer.
2. Solve prognostic equations at each time step...repeat...repeat
3. Forecasting is mean to be DETERMINISTIC (exact, certain place/time)



Your Local Forecast
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e Climate models can’ t tell you what the weather will
be like on November 10, 2060

* But they can tell you a range of what climatological
statistics of a November 10, 2060 day would look like

wxshift.com



Global Climate Models

defined: numerical representations of the interactive climate system based on
laws of physics and physical parameterizations.

Atmosphere Biogeochemistry Temperature
Ocean Surface Hydrology  Precipitation
Land surface  Carbon Cycle Winds
Cryosphere Ecology Snowpack

Divide the Earth up into
little blocks




Two-way interaction/coupling and FEEDBACKS
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Modeling Advances

Computation limits to running models
Today we are down to ~50km for best models



Parameterizations and Model Physics

* Represent processes within a grid cell using equations with physically or
empirically derived parameters.
* How to make rain???



Models and more models

Model Country Model Country
ACCESS1-0 Australia CCSM4 usa EE=
CSIRO-MkK3-6-0 Australia CESM1-BGC usa E=
CanESM2 canada %W cesmi-cams USA =
bec-csmi-1 China Bl crooms Usa EE
BNU-ESM China Bl croLesmac usaA =
FGOALS-g2 China Bl crouesmvam usa E=
FIO-ESM China Bl cisse2r usa EE=
CNRM-CM5 France BB wmirocs Japan | @
IPSL-CM5A-LR France BB MIROC-ESM Japan | @
IPSL-CM5A-MR France BB MirOC-ESM-CHEM Japan | @
MPI-ESM-LR Germany MM \\Ri-CGCM3 Japan | @
CMCC-CM Italy BB Hadeem2-cc uk. =
NorESM1-M Norway  afws HadGEM2-ES uk. =SE=
inmcm4 Russia QN HadGEM2-AO Korea [J@%




Why are there 40+ models?

Different

* resolutions

* QOcean, biosphere, cryosphere models
* Parameterizations

* Feedback strengths

e Levels of complexity

Climate Sensitivity



MAJOR HURRICANE JOAQUIN (AL11)
EPS track guidance initialized at 0000 UTC, 01 October 2015

Current Intensity: 100 kt Current Basin: North Atlantic
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Which model is right?

 Models will respond differently to the same radiative forcing
experiment, e.g., a doubling of CO,

* Solution: Use a range of models to determine the range of possible
future scenarios. A mean of models is often superior to any single
model (error cancelation).

* This approach is used in weather forecasting (e.g., hurricane tracks)
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Can models reproduce observed climate?
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How about over the NW United States?
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Model Schematic

Perturbation (e.g., changes in CO?2)

h 4

Climate Model

Climate response
(e.g., change in
temperature)




Temperature anomaly (°C)

Temperature anomaly (°C)

20t™ Century Climate: Model Simulations
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Figure 9.1. Zanal mean atmospheric temperature change from 1890 to 1999 (°C per century) as simulated by the PCM model from (a) solar forcing, (b) volcanoes, (c) well-
mixed greenhause gases, (d) tropospheric and stratospheric ozone changes, (e) direct sulphate aerosol forcing and () the sum of all forcings. Plot is from 1,000 hPa to 10 hPa
(showin on left scale) and from 0 km to 30 km (shown on right). See Appendix 9.C for additional information. Based on Santer et al. (2003a).



Predicting Future Climate

Solar irradiance and volcanic aerosols
— Have not played dominant role in long term climate changes in past 150 years

— Hence changes in these are not explicitly considered in climate change
experiments

Greenhouse gas and aerosol emissions

— Future socioeconomic and energy policies provide us with idea of future
emissions

— Since changes have been attributed to increases in atmospheric
concentrations, then future climate change hinges on predicting their
concentrations



The Future Storylines
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What factors affect future CO, levels?

Global Population (Demographics)

. Type of energy generation

Growth Rate of Economy

Type of Economy (material vs. service/info based)
Cooperation among countries (Globalization)
Sequestration efforts



Representative Concentration Pathways (RCP)

Specify watts/m2 of radiative forcing and reflect concentrations and
corresponding emissions, but NOT socio-economic storylines.

RCP8&.5: No climate policy
future. Business as usual.
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Shared Socioeconomic Pathways (SSP)

Story lines that describe
future changes in:

e population growth
e governance efficiency

* inequality across and
within countries

e technology change

* environmental
conditions

Socio-economic
challenges for mitigation

A

% SSP 5: % SSP 3:
(Mit. Challenges Dominate) (High Challenges)
Fossil-fueled Regional Rivalry
Development A Rocky Road

Taking the Highway *
SSP 2:

(Intermediate Challenges)

Middle of the Road

X SSP1: X SSP 4:
(Low Challenges) (Adapt. Challenges Dominate)
Sustainability Inequality
Taking the Green Road A Road Divided

Socio-economic challenges
for adaptation



Global population
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Temperature anomaly relative to 1861-1880 (°C)

Cumulative total anthropogenic CO, emissions from 1870 (GtCO5)
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CO; emissions (GtCO./yr)
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Global Greenhouse Gas Emissions

(Gtons CO,e/yr)
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